Role of Angular Interface Sign in Characterizing Small Exophytic Renal Masses in Computed Tomography; Prospective Study

Main Article Content

Mohamed Sharafeldeen
Mohamed Shaaban
Ahmed Hafez Afif
Mohamed Elsaqa
Nagy Naguib
Sara Elnaggar
Ahmad Beltagy

Keywords

angular interface, computed tomography, ice-cream cone sign, renal masses

Abstract

The widespread use of computed tomography (CT) has increased the incidence of small renal cell masses. We aimed to evaluate the usefulness of the angular interface sign (ice cream cone sign) to differentiate a broad spectrum of small renal masses using CT. The prospective study included CT images of patients with exophytic renal masses ≤ 4 cm in maximal dimension. The presence or absence of an angular interface of the renal parenchyma with the deep part of the renal mass was assessed. Correlation with the final pathological diagnosis was performed. The study included 116 patients with renal parenchymal masses of a mean (± SD) diameter of 28 (± 8.8) mm and a mean age of 47.7 (±12.8) years. The final diagnosis showed 101 neoplastic masses [66 renal cell carcinomas (RCC), 29 angiomyolipomas (AML), 3 lymphomas, and 3 oncocytomas] and 15 non-neoplastic masses [11 small abscesses, 2 complicated renal cysts, and 2 granulomas]. Angular interface sign was statistically comparable in neoplastic versus non-neoplastic lesions (37.6% versus 13.3%, respectively, P = 0.065). There was a statistically higher incidence of the sign when comparing benign versus malignant neoplastic masses (56.25 vs. 29%, respectively, P = 0.009). Also, comparing the sign in AML versus RCC was statistically significant (52% of AML versus 29% of RCC, P = 0.032). The angular interface sign seems beneficial in predicting the nature of small renal masses. The sign suggests benign rather than malignant small renal masses.

Abstract 511 | PDF Downloads 869 HTML Downloads 45 XML Downloads 14

References

1. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of Renal Cell Carcinoma. Eur Urol. 2019 Jan;75(1):74–84. 10.1016/j.eururo.2018.08.036

2. Kurban LAS, Vosough A, Jacob P, Prasad D, Lam T, Scott N, et al. Pathological nature of renal tumors-does size matter? Urol Ann. 2017 Oct-Dec;9(4):330–4. 10.4103/UA.UA_17_17

3. Pahernik S, Ziegler S, Roos F, Melchior SW, Thüroff JW. Small renal tumors: correlation of clinical and pathological features with tumor size. J Urol. 2007 Aug;178(2):414-7; discussion 416–7. 10.1016/j.juro.2007.03.129

4. Thompson RH, Kurta JM, Kaag M, Tickoo SK, Kundu S, Katz D, et al. Tumor size is associated with malignant potential in renal cell carcinoma cases. J Urol. 2009 May;181(5):2033–6. 10.1016/j.juro.2009.01.027

5. Smaldone MC, Kutikov A, Egleston BL, Canter DJ, Viterbo R, Chen DY, et al. Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. Cancer. 2012 Feb 15;118(4):997–1006. 10.1002/cncr.26369

6. Pierorazio PM, Johnson MH, Ball MW, Gorin MA, Trock BJ, Chang P, et al. Five-year analysis of a multi-institutional prospective clinical trial of delayed intervention and surveillance for small renal masses: the DISSRM registry. Eur Urol. 2015 Sep;68(3):408–15. 10.1016/j.eururo.2015.02.001

7. Ray S, Cheaib JG, Pierorazio PM. Active Surveillance for Small Renal Masses. Rev Urol 2020;22:9–16.

8. Bosniak MA. The small (less than or equal to 3.0 cm) renal parenchymal tumor: detection, diagnosis, and controversies. Radiology. 1991 May 179(2):307–17. 10.1148/radiology.179.2.2014269

9. Israel GM, Bosniak MA. Follow-up CT of moderately complex cystic lesions of the kidney (Bosniak category IIF). AJR Am J Roentgenol. 2003 Sep;181(3):627–33. 10.2214/ajr.181.3.1810627

10. Woo S, Cho JY. Imaging findings of common benign renal tumors in the era of small renal masses: differential diagnosis from small renal cell carcinoma: current status and future perspectives. Korean J Radiol. 2015 Jan-Feb;16(1):99–113. 10.3348/kjr.2015.16.1.99

11. Kim KH, Yun BH, Jung SI, Hwang IS, Hwang EC, Kang TW, et al. Usefulness of the ice-cream cone pattern in computed tomography for prediction of angiomyolipoma in patients with a small renal mass. Korean J Urol. 2013 Aug;54(8):504–9. 10.4111/kju.2013.54.8.504

12. Verma SK, Mitchell DG, Yang R, Roth CG, O’Kane P, Verma M, et al. Exophytic renal masses: angular interface with renal parenchyma for distinguishing benign from malignant lesions at MR imaging. Radiology. 2010 May;255(2):501–7. 10.1148/radiol.09091109

13. Finelli A, Ismaila N, Bro B, Durack J, Eggener S, Evans A, et al. Management of Small Renal Masses: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017 Feb 20;35(6):668–80. 10.1200/JCO.2016.69.9645

14. Das CJ, Thingujam U, Panda A, Sharma S, Gupta AK. Perfusion computed tomography in renal cell carcinoma. World J Radiol. 2015 Jul 28;7(7):170–9. 10.4329/wjr.v7.i7.170

15. Correas JM, Delavaud C, Gregory J, Le Guilchet T, Lamhaut L, Timsit MO, et al. Ablative Therapies for Renal Tumors: Patient Selection, Treatment Planning, and Follow-Up. Semin Ultrasound CT MR. 2017 Feb;38(1):78–95. 10.1053/j.sult.2016.11.009

16. Woo S, Kim SH. Differentiation of Small, Solid Renal Masses: A Pattern Recognition Approach. Semin Ultrasound CT MR. 2017 Feb;38(1):28–36. 10.1053/j.sult.2016.08.008

17. Chen C, Kang Q, Wei Q, Xu B, Ye H, Wang T, et al. Correlation between CT perfusion parameters and Fuhrman grade in pTlb renal cell carcinoma. Abdom Radiol (NY). 2017 May;42(5):1464–71. 10.1007/s00261-016-1009-z

18. Cornelis F, Grenier N. Multiparametric Magnetic Resonance Imaging of Solid Renal Tumors: A Practical Algorithm. Semin Ultrasound CT MR. 2017 Feb;38(1):47–58. 10.1053/j.sult.2016.08.009

19. Kim JK, Kim SH, Jang YJ, Ahn H, Kim CS, Park H, et al. Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology. 2006 Apr;239(1):174–80. 10.1148/radiol.2391050102

20. Rosenkrantz AB, Raj S, Babb JS, Chandarana H. Comparison of 3D two-point Dixon and standard 2D dual-echo breath-hold sequences for detection and quantification of fat content in renal angiomyolipoma. Eur J Radiol. 2012 Jan;81(1):47–51. 10.1016/j.ejrad.2010.11.012

21. Yoshimitsu K, Irie H, Tajima T, Nishie A, Asayama Y, Hirakawa M, et al. MR imaging of renal cell carcinoma: its role in determining cell type. Radiat Med. 2004 Nov-Dec;22(6):371–6.

22. Hötker AM, Mazaheri Y, Wibmer A, Karlo CA, Zheng J, Moskowitz CS, et al. Differentiation of Clear Cell Renal Cell Carcinoma From Other Renal Cortical Tumors by Use of a Quantitative Multiparametric MRI Approach. AJR Am J Roentgenol. 2017 Mar;208(3):W85–W91. 10.2214/AJR.16.16652

23. Mytsyk Y, Dutka I, Borys Y, Komnatska I, Shatynska-Mytsyk I, Farooqi AA, et al. Renal cell carcinoma: applicability of the apparent coefficient of the diffusion-weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade. Int Urol Nephrol. 2017 Feb;49(2):215–24. 10.1007/s11255-016-1460-3

24. Dyer R, DiSantis DJ, McClennan BL. Simplified imaging approach for evaluation of the solid renal mass in adults. Radiology. 2008 May;247(2):331–43. 10.1148/radiol.2472061846

25. Rosenkrantz AB, Wehrli NE, Melamed J, Taneja SS, Shaikh MB. Renal masses measuring under 2 cm: pathologic outcomes and associations with MRI features. Eur J Radiol. 2014 Aug;83(8):1311–6. 10.1016/j.ejrad.2014.05.016

26. Hindman N, Ngo L, Genega EM, Melamed J, Wei J, Braza JM, et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology. 2012 Nov;265(2):468–77. 10.1148/radiol.12112087

27. Moch H, Artibani W, Delahunt B, Ficarra V, Knuechel R, Montorsi F, et al. Reassessing the current UICC/AJCC TNM staging for renal cell carcinoma. Eur Urol. 2009 Oct;56(4):636–43. 10.1016/j.eururo.2009.06.036

28. Schoots IG, Zaccai K, Hunink MG, Verhagen PCMS. Bosniak Classification for Complex Renal Cysts Reevaluated: A Systematic Review. J Urol. 2017 Jul;198(1):12–21. 10.1016/j.juro.2016.09.160