Zinc as a Dual-Condition Inhibitor of HIF-1α/VEGF-α–Mediated Angiogenesis in Clear Cell Renal Carcinoma

Main Article Content

Guilherme Oliveira Carlos
Beatriz Miquilino Neto
Luiz Felipe S. Teixeira
Amanda Sena de Sousa
Monica Beatriz Mathor
Maria Helena Bellini Marumo

Keywords

Angiogenesis, clear cell renal carcinoma, HIF-1α, Hypoxia, Zinc

Abstract

Clear cell renal cell carcinoma (ccRCC) is marked by aberrant hypoxia-driven signaling and enhanced angiogenesis mediated by hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor alpha (VEGF-α). Zinc (Zn), an essential trace element with emerging anticancer potential, was evaluated for its ability to modulate angiogenesis in von Hippel–Lindau (VHL)-deficient 786-0 cells under normoxic and hypoxic conditions. Using quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence, we observed that Zn treatment reduced HIF-1α expression and VEGF-α secretion across both oxygenation states. Notably, Zn inhibited the hypoxia-induced nuclear accumulation of HIF-1α and attenuated paracrine endothelial activation, as shown by reduced human umbilical vein endothelial cell (HUVEC) viability in conditioned media assays. These effects likely involve transcrip-tional repression, enhanced proteasomal degradation of HIF-1α, and interference with VEGF-α–dependent signaling. Overall, our findings suggest that zinc may function as a multifunctional modulator of tumor angiogenesis and holds potential as an adjuvant in antiangiogenic strategies, particularly under hypoxic conditions.

Abstract 42 | PDF Downloads 14 XML Downloads 2 HTML Downloads 0

References

1. International Agency for Research on Cancer (IARC). Cancer Today—Kidney Cancer, GLOBOCAN 2022 [Internet]. Lyon: IARC; 2024 [cited 2025 Aug 5]. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/29-Kidney-fact-sheet.pdf
2. Cirillo L, Innocenti S, Becherucci F. Global epidemiology of kidney cancer. Nephrology Dialysis Transplantation. 2024;39(6):920–8. https://doi.org/10.1093/ndt/gfae036
3. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nature Reviews Disease Primers. 2017;3:17009. https://doi.org/10.1038/nrdp.2017.9
4. Li X, Xiong W, Xiong Z, Zhang X. Molecular mechanisms of renal cell carcinoma metastasis and potential targets for therapy. Frontiers in Cell and Developmental Biology. 2025;13:1521151. https://doi.org/10.3389/fcell.2025.1521151
5. Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology.
Cell Metabolism. 2018;27(2):281–98. https://doi.org/10.1016/j.cmet.2017.10.005
6. Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, et al. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomedicine & Pharmacotherapy. 2024;176:116783. https://doi.org/10.1016/j.biopha.2024.116783
7. Chen S, Qian S, Zhang L, Pan X, Qu F, Yu Y, et al. Tumor-associated macrophages promote migration and invasion via modulating IL-6/STAT3 signaling in renal cell carcinoma. International Immunopharmacology. 2022;111:109139. https://doi.org/10.1016/j.intimp.2022.109139
8. Zhang Y, Zhang S, Sun H, Xu L. The pathogenesis and therapeutic implications of metabolic reprogramming in renal cell carcinoma. Cell Death Discovery. 2025;11(1):186. https://doi.org/10.1038/s41420-025-02479-9
9. Meléndez-Rodríguez F, Roche O, Sanchez-Prieto R, Aragones J. Hypoxia-inducible factor 2-dependent pathways driving Von Hippel-Lindau-deficient renal cancer.
Frontiers in Oncology. 2018;8:214. https://doi.org/10.3389/fonc.2018.00214
10. Patel SA, Nilsson MB, Le X, Cascone T, Jain RK, Heymach JV. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clinical Cancer Research. 2023;29(1):30–9. https://doi.org/10.1158/1078-0432.CCR-22-1366
11. Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, Grasselli A, et al. Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS One. 2010;5(12):e15048. https://doi.org/10.1371/journal.pone.0015048
12. Heyliger SO, Soliman KFA, Saulsbury MD, Reams RR. The identification of zinc-finger protein 433 as a possible prognostic biomarker for clear-cell renal cell carcinoma. Biomolecules. 2021;11(8):1193. https://doi.org/10.3390/biom11081193
13. Wang J, Zhao H, Xu Z, Cheng X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biology & Medicine 2020;17(3):612–25. https://doi.org/10.20892/j.issn.2095-3941.2020.0106
14. Skrajnowska D, Bobrowska-Korczak B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients. 2019;11(10):2273. https://doi.org/10.3390/nu11102273
15. Prasad AS. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health. Frontiers in Nutrition. 2014;1:14. https://doi.org/10.3389/fnut.2014.00014
16. Nascimento-Filho CHV, Glinos AT, Jang Y, Goloni-Bertollo EM, Castilho RM, Squarize CH. From tissue physoxia to cancer hypoxia: cost-effective methods to study tissue-specific O₂ levels in cellular biology. International Journal of Molecular Sciences. 2022;23(10):5633. https://doi.org/10.3390/ijms23105633
17. Wong SJ, Ringel AE, Yuan W, Paulo JA, Yoon H, Currie MA, et al. Development of a colorimetric α-ketoglutarate detection assay for prolyl hydroxylase domain (PHD) proteins. Journal of Biological Chemistry. 2021;296:100397. https://doi.org/10.1016/j.jbc.2021.100397
18. Lin S, Tian H, Lin J, Xu C, Yuan Y, Gao S, et al. Zinc promotes autophagy and inhibits apoptosis through AMPK/mTOR signaling pathway after spinal cord injury. Neuroscience Letters. 2020;736:135263. https://doi.org/10.1016/j.neulet.2020.135263
19. Ferreira LS, Teixeira LFS, Carlos GO, Bellini MH. ZIP11 and ZnT1 are differentially expressed in human renal cell carcinoma. Medical & Clinical Research. 2024;9(8):1–5. https://doi.org/10.33140/MCR.09.08.02